Skip to content

[BUG] Timeout when running task #403

@Alital

Description

@Alital

(Explorer pid=599, ip=10.0.25.9) ERROR 11-22 15:37:46 [scheduler.py:93] Timeout when running task of batch 8 at runner 159 at attempt 1: Task(workflow=<class 'trinity.common.workflows.customized_math_workflows.MathBoxedWorkflow'>, repeat_times=16, format_args=FormatConfig(prompt_type=<PromptType.MESSAGES: 'messages'>, prompt_key='problem', response_key='answer', system_prompt_key=None, system_prompt=None, messages_key='message', tools_key='tools', image_key=None, video_key=None, reply_prefix=None, workflow_key='', reward_fn_key='', chosen_key='chosen', rejected_key='rejected', enable_concatenated_multi_turn=False, chat_template=None), rollout_args=GenerationConfig(temperature=1.0, top_p=1.0, top_k=-1, logprobs=0, max_tokens=16384, n=1), workflow_args={'with_think': True}, reward_fn_args={}, is_eval=False, reward_fn=None, raw_task={'problem': 'For any positive integer $n$, define a function $f$ by \[f(n)=2n+1-2^{\lfloor\log_2n\rfloor+1}.\] Let $f^m$ denote the function $f$ applied $m$ times. Determine the number of integers $n$ between $1$ and $65535$ inclusive such that $f^n(n)=f^{2015}(2015)."', 'answer': '8008'}, batch_id=8, task_id=85, index={'index': 981, 'taskset_id': 0})
(Explorer pid=599, ip=10.0.25.9) ERROR 11-22 15:37:46 [scheduler.py:93] Timeout when running task of batch 8 at runner 177 at attempt 1: Task(workflow=<class 'trinity.common.workflows.customized_math_workflows.MathBoxedWorkflow'>, repeat_times=16, format_args=FormatConfig(prompt_type=<PromptType.MESSAGES: 'messages'>, prompt_key='problem', response_key='answer', system_prompt_key=None, system_prompt=None, messages_key='message', tools_key='tools', image_key=None, video_key=None, reply_prefix=None, workflow_key='', reward_fn_key='', chosen_key='chosen', rejected_key='rejected', enable_concatenated_multi_turn=False, chat_template=None), rollout_args=GenerationConfig(temperature=1.0, top_p=1.0, top_k=-1, logprobs=0, max_tokens=16384, n=1), workflow_args={'with_think': True}, reward_fn_args={}, is_eval=False, reward_fn=None, raw_task={'problem': '设数列 $\left\{x_{n}\right\}$ 满足\n$x_{1}=1, x_{n+1}=4 x_{n}+\left[\sqrt{11} x_{n}\right]$ 。\n求 $x_{2012}$ 的个位数字.', 'answer': '3'}, batch_id=8, task_id=103, index={'index': 999, 'taskset_id': 0})

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions